5G

  • What is it?
    5G is short for "5th Generation", the name for the next generation of mobile cellular networks. 1G networks brought us the first cell phones, 2G networks allowed for text messaging, and 3G networks introduced mobile internet for the first time. Currently in use is 4G which has been deployed globally since 2009. 4G LTE (Long Term Evolution) is the latest version of 4G that allows a download rate of up to around 200Mbps. However, 4G networks have just about reached the limit of their capabilities at a time when users want even more data and faster speeds for their cell phones and other devices. Therefore, the need for a new type of network technology that can provide faster speeds and transmit more data to more users is pressing.

    Technically speaking, "5G" is defined only as a set of standards – such as latency, network connection density, and data transfer rate – that the next generation of mobile networks should be able to achieve. Once these standards can be met, 5G should be able to handle up to 1000 times more traffic than today's networks, and be up to 10 times faster than 4G LTE.

    To be able to meet these standards, various new technologies will be needed. For example, to support a huge increase in the number of online devices, a new band on the radio frequency spectrum (between 30 – 300GHz) will be opened for use. However, this band of radio frequency consists of "millimeter waves" which are more easily blocked by buildings and absorbed by plants and rain. Therefore, thousands of small base stations ("small cell technology") will be needed to be installed, forming a relay team to transmit signals around obstacles. In addition, to support the latency requirements of 5G, Mobile Edge Computing technology ("MEC") will need to be introduced on a large scale into cellular networks so that the data that the user needs (such as a streaming video) can exist physically closer to the user.

  • Why you need it?
    When most people think of "5G", they are thinking of eMBB (Enhanced Mobile Broadband), which will enable lightning fast data upload / download speeds on their cellphones - and make no mistake, this will be one of the drivers of 5G technology in the consumer space. However, 5G will also allow enable important technologies in other areas.

    For example, a set of 5G sub-standards called ULLLC (Ultra Reliable Low Latency Communications) define strict requirements on network latency and reliability that will allow mission critical communications to be implemented on cellular networks, such as autonomous driving vehicle technology. And emergency responders, instead of using two way radio transceiver technologies, will now be able to use VR technology to see and understand the emergency situation more clearly.

    And another set of sub-standards called Massive Machine Type Communications (mMTC) define the capabilities of a cellular network to support a very large number of devices in a small area, which may only send data sporadically. mMTC will allow the IoT (Internet of Things) use cases to be implemented on a massive scale – for intelligent factory automation, smart homes and smart cities.

  • How is GIGABYTE helpful?
    To implement 5G technologies, cellular network operators will need to upgrade their entire front to back-end network topology, which could be extremely costly. For example, considering only the front end RAN (Radio Area Network) infrastructure, the number of base stations required for 5G deployment will be four times that of the past, and construction costs will be 10 to 20 times higher than that of the 4G period.

    Providing a solution to enable cost reduction and more rapid deployment for the back-end of a new 5G network (from the edge to the cloud), GIGABYTE has collaborated with ITRI to develop iMEC: an Intelligent Mobile Edge Computing platform that can minimize mobile backhaul bandwidth requirements and provide an ultra-low latency edge cloud platform. Combining GIGABYTE servers and networking & cloud virtualization technology can replace expensive proprietary hardware and software to allow operators to implement the next generation of mobile networks quickly and cost effectively.

  • WE RECOMMEND
    RELATED ARTICLES
    [數位導覽] 5G邊緣運算  開啟你的全新體驗

    GIGABYTE 將為你開啟一趟5G生活圈的數位體驗,運用智慧城市情境,以5G三大特性: eMBB大頻寬、URLLC低延遲、mMTC巨量連結為基礎,呈現動態圖文的情境解說,如大型活動的即時沉浸式體驗、智慧車聯網及自駕車、及應用於智慧城市的新服務,同時掌握關鍵技術多接取邊緣運算(MEC, Multi-access Edge Computing)架構與技嘉邊緣運算平台在5G未來中所扮演的重要角色。

    [影片] CES 2020 展攤導覽

    在CES 2020技嘉展攤中,透過三大主題區:資料中心、智慧生活與工作站,各式亮點展品,呈現與全球科技趨勢不謀而合的應用情境,讓世界看見技嘉的創新技術能力&絕佳的解決方案。 透過這支影片帶您直擊現場,也邀請您與技嘉同行,走在雲端、邁向5G,共同見證明日科技的轉變。

    新一代通訊商機:3項高潛力 5G應用實例

    5G通訊技術近期不斷地在各大產業間被談論著,似乎所有事物都要與5G連結上,才算跟上科技潮流! 談到5G技術必定會提到大頻寬、低延遲、大連結等特性。而5G的到來能改變未來生活的樣貌,我們直接從生活實例中更明確地了解什麼是5G吧! 而技嘉在5G新世代通訊中扮演什麼關鍵角色呢?

    展望5G與新生態的變革

    當世界萬物都連上網路,那人類社會將可以構成一個龐大的高智能生物體。其大腦是「雲」,肢體有「智慧型手機」、「AI機器人」、「自駕汽車」和「智慧工廠」等各式各樣的終端應用。

    RELATED ARTICLES

    {{item.Topic}}

    {{item.Title}}

    {{item.SubTitle}}